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Abstract Protein targets specificity classification is an
important step in computational drug development and
design efforts. The enhanced classification models of small
chemical molecules enable the rapid scanning of large
compounds databases. Here, we present the k-nearest
neighbors with genetic algorithm feature optimization
approach for selection of small molecule protein inhibitors.
The method is trained on selected, diverse activity classes
of the MDL drug data report (MDDR) with ligands
described using simple atom pairs two dimensional chem-
ical descriptors. The accuracy of inhibitors identification is
presented in confusion tables with calculated recall and
precision values. The precision for selected types of targets
exceeded 70%, and the recall reaches 40%. As a conse-
quence, the method can be easily applied to large
commercial compounds collections in a drug development
campaign in order to significantly reduce the number of
ligands for further costly experimental validation.

Keywords Chemical descriptors - Compound
identification - Machine-learning methods - MDL drug data
report - Protein target specificity - Substrate specificity -
Virtual high-throughput screening

Introduction

The similarity of drug targets is typically measured
using sequence or structural information. The similarity
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of their inhibitors can also be measured by comparing
their structure, or some chemical characteristics. Here,
we consider chemoinformatics approach that uses ligand
similarity in order to find new, potent small chemical
molecules that can inhibit a given protein target. This
similarity between molecules can be mapped in a form
of a network. The biological activity of those molecules
can be used to divide the network into activity clusters,
therefore enabling the actual prediction of inhibition for
novel small molecules. Derived in that way the ligands
networks are very robust to changes in chemoinfor-
matics metrics, and such they can be used for reliable
prediction of pharmacology [1]. Those chemoinformatics
networks are stable to the method used to calculate the
ligand-set similarities and to the chemical representation
of the ligands. The ligand based networks were found to
be small-world and broad-scale [1]. In the same way
proteins can be grouped into functional groups based on
their inhibitors similarity calculated using ligands’ topol-
ogy. Relating receptors by ligand chemistry show unex-
pected relationships that may be then verified by
experiments using the ligands themselves [2].

This general principle that maps the chemical struc-
ture similarity onto similar biological activity is applied
in very different applications. For example the preclin-
ical safety pharmacology (PSP) attempts to anticipate
adverse drug reactions (ADRs) during early phases of
drug discovery by testing compounds on their contribu-
tion to known clinical ADRs (clinical trials, animal
experiments, and molecular studies). In the work of
Benter et al. the detailed analysis of pharmacology data
was performed, and the prediction of adverse drug
reactions and off-target effects from chemical structure
only [3]. They explored PSP chemical space and its
relevance for the prediction of adverse drug reactions.
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They constructed in silico Bayesian models for 70 PSP-
related targets, which are able to detect 93% of the ligands
binding to those targets at the classification rate of about
94% [3]. Then they employed the World Drug Index
(WDI) and built the models for adverse drug reactions
based only on normalized side-effect annotations in the
WDI, without any analysis of the underlying functional
knowledge. On average 90% of the adverse drug reactions
observed with known, clinically used compounds were
detected, an overall correct classification rate of 92% [3].
Combining PSP and ADR models enable authors to
propose new hypotheses linking targets and adverse
effects even without precise knowledge about the structure
of a protein target.

Similarly, the high-throughput screening (HTS) performs
activity testing of millions of compounds for chosen protein
target. Therefore it can identify an initial set of lead
molecules with high probability of activity. Selected
compounds are further prioritized by optimization of
various molecular characteristics. Unfortunately this ap-
proach is very expensive, and cannot be applied on whole
genomes scale. On the other hand recent advances in
structural genomics provide an ever growing number of
protein structures. The reduction of the number of com-
pounds to be tested experimentally is needed in order to
allow for wider system biology studies. This in silico
approach is called virtual high-throughput screening
(VHTS), and historically in most cases simple similarity
searches were performed. Such computational approach
uses only information about the structure of the inhibitor,
without taking into account the protein structure, or
underlying molecular mechanism of the interaction between
protein and ligand. This is in principle similar to the
preclinical safety pharmacology techniques as described in
[3]. On the other hand, when the structure of a protein
target is available, it can be used for guiding the similarity
approaches even when the initial set of known inhibitors is
very small, or empty [4, 5].

Recently machine learning algorithms were used for
target specific compounds classification [5, 6]. Several
machine learning techniques were trained to distinguish
between kinases’ inhibitors and non-active small chemical
molecules [7]. They reviewed support vector machines, the
k nearest neighbor classification with GA-optimized feature
selection, the neural networks and recursive partitioning.
Trend vector analysis in combination with topological
descriptors, has proved useful in drug discovery for ranking
large collections of chemical compounds in accordance
with their biological activity classes [8, 9]. We present here
the application of supervised machine learning algorithm,
namely k-nearest neighbor with genetic algorithm feature
optimization. The evaluation of our method is done for five
divergent activity classes of the highest medicinal rele-
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vance, which already have been investigated in several drug
discovery programs or computational approaches. The
selected activity classes are taken from the commercially
available MDL drug data report [10]. Each ligand from the
database can be described using various types of chemical
descriptors. The simplest descriptors, like 2D structure of
ligand, allow for a partial estimate of ligand activity for a
given protein target [5]. In most of machine learning
approaches, as reviewed by Plewczynski et al. [11], the
use of parameters describing the compound’s topology gave
satisfactory results. Bender and Glen [12] using the number
of atoms per element were able to outperform virtual-
affinity-based fingerprints and unity fingerprints in some
activity classes. Therefore here, we utilize also very simple
atom pairs descriptors to describe small chemical
molecules.

In our previous work we performed the wide evaluation
of different machine learning methods [11]. The support
vector machines, random forest, artificial neural networks,
k-nearest-neighbor, naive Bayesian classification, and deci-
sion tree were used there to identify the active compounds
for a selected protein target. Previously we reported
differences in the overall performance of different methods
depending on the biological target and activity class.
Different methods can have different applications; some
provide particularly high enrichment, others are strong in
retrieving the maximum number of actives [11].

In the present study we focus on k-nearest-neighbor
method for identification of inhibitors of proteins with
genetic algorithm optimized features trained on selected
five activity classes of MDL drug data report [10]. kNNsim
tool perform rapid screening of very large databases of
small chemical molecules and selecting new ligands for
known activity classes. We provide here an in-depth
description and detailed results for k-nearest neighbor
method. The presented methodology is able to perform
virtual high-throughput screening, when the size of the
database is the main obstacle. The comparison of our
method with other machine learning approaches is outside
of the scope of this manuscript. kNNsim tool allows for
faster scanning of large ligands databases in comparison to
other recently published methods, such as combination of
SVM with naive Bayesian trained on Ghose-Crippen
parameters and others [5, 6, 7, 12, 13].

Method

First, we have selected five divergent activity classes
from the MDL drug data report [10]. All compounds are
clinically tested or already launched on the market. For
each protein target known inhibitors were used for training
k-nearest neighbor method with genetic algorithm feature
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selection and optimization. Additional tests were per-
formed on biologically tested compounds from the same
database. The cyclooxygenase-2 activity class contains
112 inhibitors that were divided randomly into two
subsets: training (75 inhibitors with randomly selected
from other activity classes 2106 inactive ones) and testing
(respectively 37 and 8346). The dihydrofolate activity
class has 28 known inhibitors (divided into 17 for training
and 11 for testing), and randomly selected 10529 inactive
ones (dividing them to two groups: 2149 and 8380). In
the case of reverse transcriptase we used 114 inhibitors
(79 and 35) and 10450 inactive compounds (2130 and
8320), and for thrombin we have found 112 inhibitors (77
and 35) and 10459 inactive ones (2036 and 8423). For the
antiestrogen inhibition class we have collected 34 inhib-
itors (22 and 12) and 11580 inactive compounds (2528 for
training and 9052 for testing). In addition we have selected
biologically tested molecules for inhibition of cyclo-
oxygenase-2 (792 molecules), dihydrofolate (154), throm-
bin (1066), reverse transcriptase (597) and antiestrogen
(256) protein targets.

Cheminformatics methods operate under the assumption
that similar chemicals have similar biological activity. This
principle bridges chemical and biological space, and is the
key to drug discovery and development [14]. One could
predict a ligand’s biological activity given only its chemical
structure by similarity searching in libraries of compounds
with known activities. Yet the optimal selection of a
similarity metric in chemical space depend on a particular
protein target. The work of Nettles et al. compares both 2D
and 3D chemical descriptors as tools for predicting the
biological targets of ligand probes, on the basis of their
similarity to reference molecules. The 2D methods in
general outperform the 3D methods (88% vs 67% success)
in protein target prediction [14]. These findings support
idea to test similar chemical descriptors in the context of
inhibition prediction using compounds from MDL MDDR
database of known drugs.

The simplest two dimensional topological descriptors,
i.e., the regular atom pair AP descriptors [15], were used in
this study. This type of chemical descriptors have been
proven to be successfully in classification of compounds for
various activity classes. They are easy to use and interpret.
Descriptors were calculated for all ligands using the MIX
tool [16], which counts for each atom pair the number of
covalent bonds that join them. Atom pairs represent each
molecule as a binary vector with ‘1 for all present types of
atom pairs, and ‘0’ for those that are absent. We have tested
also other chemical descriptors (such as TT regular
topological torsion, DP pairs using sq types, DT torsions
using SQ types, DRUGBITS substructures and ROF6 set of
descriptors [16]), and detailed comparison of results is
presented in Table 1.

Table 1 kNNGA precision and recall values for selected five MDDR
activity classes trained using launched and preclinical inhibitors

Target Precision Recall
COX2 0.66 0.37
DH 0.1 0.25
TH 0.79 0.44
RT 0.42 0.26
AE 0.53 0.17

The results were obtained using a larger set of chemical descriptors, in
comparison to Table 1, when only atom pairs were used for describe
inhibitors.

For activity class prediction we used here the supervised
k-nearest neighbors method (kNN) [17] that subdivides a
set of input cases (characterized by the vectors of
descriptors) into different classes. The kNN predicts a
classification for test cases based on the majority voting of
its k nearest neighbors in the feature space. In our
implementation k=5 is used. We used the Euclidian metric
for calculating distances and the same set of descriptors as
for other methods. The most discriminatory descriptors are
calculated using a genetic algorithm with four generations
and 40 chromosomes [18].

The variable selection k-nearest neighbours (kNN)
method is a typical nonlinear methodology for building
quantitative structure-activity relationship (QSAR). It is
based on calculating correlation between chemical descrip-
tors of compounds and their biological activities. The
activity models are trained by finding a subspace of the
original descriptor space where activity of each compound
in the data set is most accurately predicted as the averaged
activity of its k nearest neighbors in this subspace [19]. In a
different approach variable selection were to find active
analogues, i.e., similar compounds that may display similar
profiles of pharmacological activities. The activity of each
compound is predicted as the average activity of K most
chemically similar compounds from the data set [20]. The
chemical structures are characterized by multiple topolog-
ical descriptors such as molecular connectivity indices or
atom pairs. The chemical similarity is evaluated by
Euclidean distances between compounds in multidimen-
sional descriptor space, and the optimal subset of descrip-
tors is selected using simulated annealing as a stochastic
optimization algorithm.

Performance
The performance of our supervised machine learning

classifier is described here using accuracy E, precision P
and recall R values, together with confusion tables. The
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error estimates are calculated using the leave-one-out
procedure using the following equations:

Jp +fn

=—— % 100%,
+fp + i+ fin ’

1
R=—"__4100%,
ip+fn
Ip
pP= + 100%,
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where #p is the number of true positives, fp is the number of
false positives, tn is the number of true negatives and fn is
the number of false negatives. The classification error E
provides an overall error measure, whereas recall R
measures the percentage of correct predictions (the proba-
bility of correct prediction), and precision P gives the
percentage of observed positives that are correctly predicted
(the measure of the reliability of positive instances
prediction).

On Fig. 1 we present recall and precision values for the
largest activity classes from MDDR database. We present
the results of training kNNsim on the pre-clinical and
launched compounds from MDDR, and comparing them to
the results of training on the whole set of positives
including biologically testing compounds. Similarly we
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Fig. 1 The recall and precision values for five diverge MDDR
activity classes. The black symbols mark the training results on the
pre-clinical and launched compounds from MDDR. The red color is
used for results of training on the whole set of positives including
biologically testing compounds. The light green denotes testing results
on pre-clinical and launched ligands. The blue is testing results for all
positives. The precision and recall for all types of targets are over 70%
for selected targets on training sets, whereas on testing datasets is
lower
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present also the testing results on pre-clinical and launched
ligands and for all positives. The precision and recall for all
types of activity classes is over 70% for all protein targets
on training sets, whereas on testing datasets it is slightly
lower.

In Table 2 we present detailed benchmark results using
confusion tables. The precision for selected types of targets
exceeded 70%, and the recall reaches 40%. In the first table
kNNsim precision and recall values are calculated for the
five selected activity classes of MDDR database, namely
cyclooxygenase-2 (COX2), dihydrofolate (DH), thrombin
(TH), reverse transcriptase (RT) and antiestrogen (AE). The
training was performed on two thirds of launched and
preclinical inhibitors of those sets of compounds. For each
activity class the accuracy, the classification error, the
precision and recall values were calculated on the rest, i.e.,
one third of preclinical and launched inhibitors.

Those results are in close agreement with other compar-
ative studies [7, 11, 21, 22]. The kNNsim method outper-
forms other types of QSAR methods in terms of its speed
and relative precision. The high average precision (~70%),
i.e., a number of false positives in the data set predicted to
be active, suggest that kNN method can be used in low-
throughput screening experiments in which only a few
compounds can be validated. On the other hand the if one
wants to retrieve actives as completely as possible, kNN
can be a less convenient choice, as its average recall value
(~40%) is below the values of other QSAR methods. The
detailed results shows that k-nearest neighbors similarity
with genetic algorithm features optimization is able to
predict recently published ligands for a given protein target
on the basis of initial leads, which is of crucial importance
in medicinal research.

Conclusions

We present here a rapid software tool for selection of
inhibitors from the large collection of compounds using
some prior knowledge. The supervised machine learning
approach, namely k-nearest neighbor with genetic algo-
rithm feature optimization, is trained here on known
members of several activity classes from MDDR database.
Then the classification models are used for prediction of
new molecules active for selected protein drug targets.
Similarly, the method is able to enrich a set of known
activites, when some prior knowledge is available [11].
When no initial information is available, one can use the
results of docking experiment performed on a randomly
selected subset of the whole database (for example 10%), in
order to extend its results for the large commercial
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Table 2 kKNNGA precision and recall values for selected five MDDR
activity classes trained using launched and preclinical inhibitors

All protein targets

Target Precision Recall
COX2 0.65 0.38
DH 0.09 0.25
TH 0.77 0.42
RT 0.40 0.25
AE 0.5 0.16
Cyclooxygenase-2:
Predicted 0 1
Observed 8320
0 0 8347 8307
1 1 37 13
All 8384
Accuracy 99.37%
Classification error 0.63%
Recall 64.86%
Precision 37.50%
Dihydrofolate:
Predicted 0 1
Observed 8397 4
0 8390 8387 3
1 11 10 1
All 8401
Accuracy 99.85%
Classification error 0.15%
Recall 9.09%
Precision 25.00%
Thrombin:
Predicted 0 1
Observed 8395 65
0 8425 8387 38
1 35 8 27
All 8460
Accuracy 99.46%
Classification error 0.54%
Recall 77.14%
Precision 41.54%
Reverse transcriptase:
Predicted 0 1
Observed 8302 56
0 8323 8281 42
1 35 21 14
all 8358
Accuracy 99.25%
Classification error 0.75%
Recall 40.00%
Precision 25.00%
Antiestrogen:
Predicted 0 1
Observed 9027 38
0 9053 9021 32
1 12 6 6
all 9065
Accuracy 99.58%
Classification error 0.42%

Table 2 (continued)

All protein targets

Recall
Precision

50.00%
15.79%

The list of protein targets include: cyclooxygenase-2 (COX2),
dihydrofolate (DH), thrombin (TH), reverse transcriptase (RT) and
antiestrogen (AE). Next tables present classification performance for
each protein target calculated on the set of preclinical and launched
inhibitors from MDDR database. Columns represent observed in
experiments class of a compound for each of targets (active/inactive)
whereas rows represent the prediction results. Here we present results
on testing datasets with one third available positives (preclinical or
launched inhibitors for the selected target) and two thirds of negatives
(randomly selected subset of preclinical or launched inhibitors
knowing not to inhibit selected target). The last four lines for each
table present the calculated accuracy of the classification, the
classification error, and the precision and recall values on the testing
datasets using launched and pre-clinical compounds.

compounds collection. We showed that in this way we
are able to recover 50% of all known actives for
selected activity classes [5]. The kNNsim algorithm
performs fast and reliable prediction of activity classes
for previously unclassified compounds. It performs the
classification of small molecules using 2D topological
descriptors with respect to their potential inhibition on
selected target classes. The MIX tools chemical descrip-
tors [16] are useful for the different types of classification.
The selection of molecular descriptors should be done in
accordance with the balance between general and detailed
level of description.

In our previous publication [11] we have compared
different QSAR methods. We were interested in estimating
the performance of those methods on standardized bench-
mark dataset both in terms of inhibition classes and the set
of used molecular descriptors. In total seven different
QSAR methods were trained to classify a diverse set of
protein targets of medicinal importance. We have pointed
out the significant differences in the performance of QSAR
methods independent of the biological target and compound
class. We have concluded, that different methods can have
different applications; some provide particularly high
precision, others are strong in retrieving the maximum
number of active molecules.

In the present work we focused our attention on kNN,
i.e., k-nearest neighbors similarity with genetic algorithm
features optimization. We have shown that it enhances the
efficiency of prediction of activity classes for small
molecules for a wide set of protein targets. The kNNsim
supervised machine learning method can be used for the
virtual high-throughput screening campaign. It can priori-
tize the typically very large number of hits from screening
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experiments. It also identifies compounds from large
compounds collections for further experimental validation.
In the context of the pharmaceutical industry it allows for
designing new compounds that are not present in the
present screening collection to be synthesized, or bought
from a commercial source. The kNNsim can be therefore
used in high-throughput fashion for solving practical
problems of virtual screening. It is hoped that the new
generation of in silico predictive models for drug activity is
able to help support early QSAR to accelerate drug
discovery. In addition, models such as the kNN based can
be used for compound profiling in all development stages.
Due to its relative simplicity, high degree of automation,
nonlinear nature, and computational efficiency, this method
could be applied routinely to a large variety of experimental
data sets.
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